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ABSTRACT: Density functional theory calculations are used in this study to
investigate the product selectivity and mechanism of borane-catalyzed reductive
aldehyde amination by a H, reducing agent. Knowing that different boranes yield
different products, two typical boranes, (B(2,6-CL,CsH;)(p-HCGF,), and B-
(C¢Fs)3), are studied. Of the seven possible pathways of B(2,6-CL,C¢H;)(p-
HC(F,),-catalyzed aldehyde amination analyzed herein, four are favorable. Three of
the four favorable pathways involve imine intermediates, and the fourth is a Lewis
acid—base synergistic pathway that involves amine—alcohol condensation. As for
the B(C¢Fs); catalyst, it forms a highly stable Lewis adduct with aniline, which
impedes the hydrogenation of imine. Therefore, the product of B(C¢Fs);-catalyzed
reductive amination of benzaldehyde and aniline is an imine. The linear
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relationship between the charge on the boron atom in the Lewis acid and the relative energies of the Lewis adduct and H,
splitting transition state indicates that this parameter determines product selectivity. Indeed, when the natural charge on boron is
larger than 1, an amine is produced, whereas when the charge is less than 1, an imine is produced. Hence, the selectivity of products
can be controlled by adjusting the natural charge of the boron atom in the Lewis acid catalyst.

1. INTRODUCTION

Amines and alkylated amines are commonly occurring building
blocks and essential precursors used in the construction of
biologically active compounds, pharmaceuticals, agrochemicals,
and industrial materials. As such, they have numerous
applications in the fields of biology and chemistry."” Although
several methods have been proposed for the catalysis of amine
functionalization reactions,” there is still a strong demand for
the establishment of a green and sustainable reduction that can
be used to synthesize multifunctional amines.” Over the past
decade, amazing progress has been achieved in the field of
metal-free catalytic reductive amination particularly with the
use of “frustrated Lewis pairs” (FLPs)."

The B(C¢F;);-catalyzed reductive amination of aldehydes
and ketones was first reported by Ingleson in 2016, using
hydrosilanes as reducing agents (Scheme 1a).” The group of
Zhong developed an asymmetric reductive system of ketone
amination using B(C¢Fs); as a catalyst and ammonia borane as
a reductant (Scheme 1b).° Recently, the groups of Sobs and
Ogoshi reported the borane-catalyzed reductive alkylation of
amir71es with aldehydes using H, as the reducing agent (Scheme
Ic).

The commonly accepted mechanism of the reductive
amination reaction consists of two steps: (I) aldehyde—
amine condensation yielding an imine intermediate and (II)
Lewis acid reduction yielding the amine product (Scheme 1d).
For example, the mechanism of borane or borane/H,O-
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catalyzed N-alkylation of amines with aldehydes involves the
condensation of the two reactants (amine and aldehyde) to
produce the imine (N-benzalaniline) intermediate followed by
the reduction of this intermediate with hydrosilane.®
Considering that the chemical natures of H, and hydrosilane
are different, it is expected that the mechanism of reductive
ketone or aldehyde amination by H, is different from that of
amination by hydrosilane. In this study, we investigate the
mechanism underlying the Lewis acid B(2,6-CL,C¢H;)(p-
HCF,),-catalyzed reductive alkylation of aniline with
benzaldehyde using H, as the reducing agent. Four possible
reaction channels (Scheme 2) are proposed including (A)
reaction initiation by H, splitting, followed by benzaldehyde
reduction to primary alcohol and then B(2,6-CL,C¢H;)(p-
HC,F,),-catalyzed aniline attack to give the amine product
(Scheme 2A); (B) condensation of aniline and benzaldehyde,
leading to the formation of an imine intermediate that is
subsequently reduced to amine by B(2,6-Cl,CH,) (p-HC(F,),
and H, (Scheme 2B); (C) H, activation by B(2,6-CL,CsH;)(p-
HCGF,), and benzaldehyde, followed by the attack of aniline
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Scheme 1. Borane-Catalyzed Reductive Amination of
Ketones or Aldehydes Using Different Reducing Agents ((a)
Hydrosilane, (b) H;NBHj;, and (c) H,); (d) Proposed
Mechanism of the Reductive Amination of Ketones or
Aldehydes with Amines

(a) B(C4Fs5)3-catalyzed reductive amination using hydrosilanes

. ? B(CeFs)s _R?
Lo, ~— oo CJ
RFCR2 R;SiH T

(b) B(C¢F5);-catalyzed asymmetric reductive amination with HyNBH;

N

R
0 B(CeFs)3 i
+ g, e Rl/\
RITOR2 H;N-BHj3

(c) Borane-catalyzed reductive alkylation of amines using H,

Borane

(d) Proposed mechanism
<H) o Il an
L Rl EOF RN e O G
< R R® R’ R~ R’

on the alcohol cation, yielding the amine product (Scheme
2C); (D) condensation of aniline and benzaldehyde followed
by the reduction of the resulting imine intermediate under the

effect of the ion pair generated via FLP (B(2,6-Cl,C4H;)(p-
HC(F,), and tetrahydrofuran (THF))-induced H, heterolysis
(Scheme 2D).

The reaction channel D had been previously proposed by
the group of Ogoshi, who considered that the THF solvent
participates in the reaction by acting as a Lewis base.”
Considering that the reaction can also take place in toluene
solvent (i.e., in the absence of the THF Lewis base), with 45%
product yield, it is anticipated that other reaction pathways,
such as pathways A, B, or C, are also possible. Interestingly, the
amine product changes when the borane catalyst is changed.
The reason behind such a change remains unclear, which
impedes the development and application of the amine
alkylation reaction. Herein, density functional theory (DFT)
calculations are used to analyze all possible molecular
mechanisms of borane-catalyzed reductive amination of
benzaldehyde with aniline in THF solvent using H, as the
reducing agent (eq 1).
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Scheme 2. Four Different Proposed Mechanisms of Ketone or Aldehyde Reductive Amination ((A) Amine-Alcohol
Condensation Pathway, (B) Imine Pathway, (C) H, splitting by Borane and Benzaldehyde Pathway, (D) THF pathway)
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Figure 1. Free-energy profile of the reductive amination of benzaldehyde with aniline using H, as the reducing agent and B(2,6-CL,C;H;)(p-
HCF,), catalyst (path A). Optimized structures of the stationary points (key bond lengths are given in A).

Figure 2.
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IBOs of the three reactive orbitals implicated in the reduction of benzaldehyde by a-2 via the a-TS2 transition state, along the reaction

https://doi.org/10.1021/acs.joc.1c02491
J. Org. Chem. 2022, 87, 1194—1207


https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig2&ref=pdf
pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.1c02491?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Organic Chemistry

pubs.acs.org/joc

2. RESULTS AND DISCUSSION

In this section, we discuss the four possible mechanisms of
B(2,6-CL,C¢H;) (p-HC(F,),-catalyzed reductive aniline alkyla-
tion with benzaldehyde using H,. The chemoselectivities of
this reaction and the B(C4Fs);-catalyzed reductive alkylation
reaction are also analyzed. The optimized structures of all of
the species in the following reaction pathways are shown in the
Supporting Information (SI).

2.1. Mechanism of Pathway A (Lewis Acid—Base
Synergistically Promoted Amine—Alcohol Condensa-
tion). First, we compare the possible Lewis adducts of B(2,6-
CL,C¢H;)(p-HCGF,), with aniline, benzaldehyde, and THF.
The results demonstrate that compared to benzaldehyde and
THF, aniline exhibits better coordination with B(2,6-
CLC¢H,)(p-HC(F,),, resulting in a more stable Lewis adduct
(a-1). In fact, the free energy of a-1 is 10.4 kcal mol™" lower
than that of separated aniline and boron, which indicates that
this adduct is the main existing form of the Lewis acid B(2,6-
ClL,C¢Hy)(p-HC(F,), and is the reference point for the
reaction. The optimized structures and relative free energies
of the three Lewis adducts are illustrated in Figure SI in the
Supporting Information. In addition, as confirmed by the study
of Guru et al,” the Lewis adduct a-1 is in equilibrium with
free B(2,6-CL,C¢H;)(p-HC¢F,), and aniline in the THF
solvent.

The computed Gibbs free-energy profile of pathway A is
presented in Figure 1A,B, and the optimized structures of
intermediate and transition states along the pathway are shown
in Figure S2 in the Supporting Information. As mentioned in
the Introduction section, the catalytic cycle involves five key
steps, including dihydrogen cleavage, aldehyde reduction,
amine/alcohol condensation, proton migration, and catalyst
regeneration. In the first reaction step, H, is split by the Lewis
acid B(2,6-CL,CH;)(p-HCGF,), and aniline. The reaction
proceeds via the a-TS1 transition state and has a free-energy
barrier of 28.2 kcal mol™! in THF (relative to a-1). This is a
common FLP-promoted H, activation reaction that has been
extensively studied by our group, as well as by other research
groups.” Notably, several structures of a-TS1 were determined
computationally, but only the most stable one is shown in
Figure 2. The free-energy barriers of a-TS1 calculated using
B3LYP-d3 and wB97XD functionals are 24.6 and 25.3 kcal
mol ™!, respectively. The product of the H, splitting reaction
step is the H*/H™ ion pair (a-2) that can be used for the
hydrogenation of unsaturated compounds. We optimized the
a-2 ion pair using the 6-311++G(d,p) basis set including
diffuse functions. The corresponding free energy is 3.1 kcal
mol™" that is close to that calculated by the method defined in
computational details (4.0 kcal mol™).

The second step in the catalytic cycle is the reduction of
benzaldehyde by a-2 via the a-TS2 transition state. This step
has a free-energy barrier of 23.2 kcal mol™" in THF (relative to
a-1). Based on the vibrational mode of a-TS2, H* and H™ are
simultaneously transferred to benzaldehyde from the a-2 ion
pair. This can be demonstrated by the simultaneous formation
of O—H, and C—H, bonds along the intrinsic reaction
coordinate (IRC), as shown in Figure S3 in the Supporting
Information. This result is different from that reported in other
computational studies concerning the FLP (borane and solvent
(e.g., THF))-catalyzed hydrogenation of carbonyl compounds.
In these studies, the reaction of carbonyl hydrogenation occurs
in a stepwise manner.'® Figure 2 shows that the intrinsic bond
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orbitals (IBOs) transform continuously from the electronic
structure of the starting material to that of the product, along
the IRC. Three IBOs show a concerted transformation with
one N—H ¢ bond transforming into a O—H ¢ bond and the
B—H o bond changing into a C—H ¢ bond. The reduction of
benzaldehyde by a-2 generates benzyl alcohol, a product that
coordinates with B(2,6-CL,C¢H;)(p-HCGF,), to produce a
classical Lewis adduct and a stable intermediate labeled a-S.
Compared to free benzyl alcohol, the C—O bond in
intermediate a-S is longer (1.47 vs 1.41 A), which indicates
that this bond is activated by the strong electron-withdrawing
effect of the Lewis acid B(2,6-Cl,CH;)(p-HC4F,), in a-S.
Such activation of the C—O bond facilitates subsequent
nucleophilic attack by aniline.

In the third step of the alkylation reaction, the activated
carbon in intermediate a-5 undergoes nucleophilic attack by
aniline, and the borane B(2,6-CL,C¢H;)(p-HC(F,), moiety
abstracts the hydroxyl group from the benzyl alcohol moiety.
The reaction occurs via the a-TS3 transition state, and the
corresponding free-energy barrier is 22.9 kcal mol™ in THF
(relative to a-1). Under the combined action of B(2,6-
CL,C4H;) (p-HC(F,), and aniline, the amine and alcohol group
undergo the condensation reaction. In this novel reaction
mode of amine—alcohol condensation, the amine acts as both a
reactant and Lewis base.'' Two IBOs show a concerted
transformation with one aniline lone pair (top) transforming
into a C—N ¢ bond and the C—O ¢ bond (down) changing
into a lone pair (Figure S4 in the Supporting Information).
The product of such transformation is the ammonium
intermediate a-6. Previously, Meng et al. had studied the
B(CgF;);-catalyzed alkylation of arylamines using benzylic
alcohols.” Based on the reaction pathway they proposed, the
borane-alcohol Lewis adduct dissociates to yield a carbocation,
which in turn undergoes nucleophilic attack by the amine.
Considering that the energy barrier of the pathway proposed
by Meng et al. is higher than that of the pathway detailed
herein (35.7 vs 28.2 kcal mol™), it is not likely that it would
have a significant contribution under the investigated
experimental conditions.

The a-6 intermediate subsequently passes through a proton
transfer transition state (a-TS4) to give the desired amine
product (benzenamine) and the Lewis adduct [B]-H,O ([B] =
B(2,6-CL,C¢H;)(p-HC(F,),). The latter undergoes a bimolec-
ular nucleophilic substitution reaction with aniline, and the
reaction proceeds via the a-TSS (Sy2@B) transition state.
Interestingly, the nucleophile (aniline) and leaving group
(H,0) implicated in the Sy2 reaction are both neutral,"* and
the free-energy barrier is only 15.2 kcal mol™ in THF (relative
to a-7). The ligand exchange of aniline finally results in the
regeneration of the a-1 and free H,O, thereby completing the
catalytic reaction. In studies conducted by Fasano et al. and
Chen et al,,”® [B]-H,O acts as a Bronsted acid that catalyzes
the N-alkylation reaction. However, there is a 4 A molecular
sieve in our studied system, and the H,O byproduct is
absorbed by this sieve.

Overall, the results suggest that pathway A, that is, FLP-
catalyzed aldehyde reduction by H,, followed by amine—
alcohol condensation and ligand exchange, is energetically
feasible, with an overall energy change of —25.0 kcal mol ™.
The rate-limiting step is the splitting of H, by borane and
aniline (via a-TS1), and it has a free-energy barrier of 28.2 kcal
mol ™. Pathway A does not involve an imine intermediate;
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Figure 3. Free-energy profile of the Lewis acid B(2,6-Cl,C¢H;) (p-HCGF,),-catalyzed reductive amination of aldehydes in which imine intermediate
is generated to produce an amine via pathway B. Optimized structures of the stationary points (key bond lengths are given in A).

however, it is possible under experimental conditions, as
evidenced by the low free-energy barrier.

2.2. Mechanism of Pathway B (Imine Pathway). Based
on our calculations, two main steps (imine formation and
reduction) are implicated in pathway B, as shown in the free-
energy profile illustrated in Figure 3. The optimized structures
of all species along the pathway are shown in Figures S5 and S6
in the Supporting Information. In the first step, an imine
intermediate is generated (Figure 3A and part of Figure 3B),
and in the second step, this intermediate undergoes hydro-
genation to form an amine (Figure 3B). The imine is formed
via five successive elementary steps, namely, nucleophilic
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attack, proton abstraction, hemiaminal formation, dissociation
of hemiaminal, and proton transfer.

2.2.1. Imine Formation. First, borane B(2,6-Cl,C¢H,)(p-
HCGF,), and benzaldehyde coordinate to produce a Lewis
adduct b-1. Then the nucleophilic attack of aniline on the
carbonyl carbon occurs through transition state b-TS1 as
evidenced by the low free-energy barrier of the reaction (12.3
kcal mol™" in THF, relative to a-1). Subsequently, a second
aniline molecule assists in the migration of a proton from the
ammonijum moiety to the oxygen atom, resulting in the
formation of a hemiaminal via transition states b-TS2 (13.2
kcal mol™') and b-TS3 (8.3 kcal mol™). The direct
intramolecular proton transfer from ammonium to oxygen

https://doi.org/10.1021/acs.joc.1c02491
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via b-TS2’ is also considered; however, this elementary step
has a free-energy barrier of 28.8 kcal mol ™!, which is higher
than that of the aniline-assisted pathway. The generated
hemiaminal subsequently coordinates with borane B(2,6-
CL,C¢H;)(p-HCGF,), to form a Lewis adduct b-7.

Two reaction pathways (B-1 and B-II) are possible for the
Lewis adduct b-7. Path B-I involves an imine intermediate,
whereas path B-II does not. The iminium intermediate
implicated in path B-I is generated upon the facile abstraction
of a hydroxyl moiety from hemiaminal by the Lewis acid B(2,6-
ClL,C¢H;)(p-HCGF,), via transition state b-TS4. The free
energy of this transition state is only 13.9 kcal mol™" higher
than that of a-1 in THF. The OH-abstraction reaction
generates a cation; however, the energy required for this
process is less than that reported by Meng et al.’* The
discrepancy is mainly attributed to the stabilizing effect of the
lone pair of electrons on the nitrogen atom in iminium. In the
next step, the imine product (N-benzalaniline) is generated by
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intramolecular proton transfer from the iminium moiety to the
anionic hydroxyboron moiety via transition state b-TSS. The
free energy of this transition state is only 4.3 kcal mol™" higher
than a-1 in THF. Considering that the free-energy barrier of
imine formation from aniline and benzaldehyde is only 13.9
kcal mol™" and that of the reverse process is only 11.0 kcal
mol™}, the reaction is reversible. Moreover, the low reaction
barrier associated with this reaction is consistent with the
previously reported experimental result of 83% imine yield
obtained within 5 min.”*

2.2.2. Imine Reduction. Imine hydrogenation is an
extensively studied reaction that involves dihydrogen cleavage
and hydride transfer."” In this study, the presence of the H,O
byproduct implies that an additional ligand exchange step (a-
TSS, 18.6 kcal mol™ relative to a-1) is implicated in the
reaction. The H, reducing agent is first split by imine (Lewis
base) and borane B(2,6-CL,C4H;)(p-HC(F,), via transition
state b-TS6. The free-energy barrier of the splitting reaction is

https://doi.org/10.1021/acs.joc.1c02491
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Figure 6. Free-energy profile of the FLP (B(2,6-Cl,C4H;)(p-HCF,),/benzaldehyde)-catalyzed reductive amination of aniline and benzaldehyde
by H, via pathway C. Optimized structures of the stationary points (key bond lengths are given in A).

28.8 kcal mol™" in THF (relative to a-1), and this step is the
rate-determining step along path B-I. To confirm the validity of
the barrier, the b-TS6 transition state was studied using
B3LYP-d3 and wB97XD functionals, and the calculated free-
energy barriers are 26.5 and 27.1 kcal mol™’, respectively.
Considering that all three methods used herein yield similar
results, our calculated energy values are reasonable and valid.
Finally, the transfer of hydride from hydridoborate to the
iminium moiety leads to the desired product (benzenamine)
via b-TS7. IBOs of the two reactive orbitals implicated in the
reduction of imine via the b-TS7 transition state along the
reaction pathway are shown in Figure S7 in the Supporting
Information.

In path B-II, b-7 dissociates into free hemiaminal and borane
B(2,6-CL,C4H;)(p-HC(F,), via transition state b-TS8 (18.5
kcal mol™" higher than a-1 in free energy). Subsequently, H, is
split by hemiaminal and borane B(2,6-CL,C¢H;)(p-HC4F,),,
which act as a Lewis acid and base, respectively. This leads to
the formation of b-14 ion pairs via transition state b-TS9. The
free energy of this transition state lies at 35.6 kcal mol™" above
a-1 in THF. Considering that the energy barrier associated
with b-TS9 is higher than that corresponding to b-TS6 (28.8
kcal mol™"), path B-II is less energetically favorable than path
B-1. Subsequently, the H,O byproduct dissociates from b-13,
and the b-10 ion pair is formed. The next steps are the same as
those implicated in path B-I.

The reduction of imine by ion pair a-2 (path B-III) is also
considered, and the corresponding free-energy profile is shown
in Figure 4. First, the imine abstracts a proton from a-2,
thereby generating an iminium intermediate b-14. Then,
PhNH, is liberated from b-14, resulting in the formation of the
b-11 ion pair. The subsequent transfer of hydride via transition
state b-TS10 leads to the amine product, and the associated
free-energy barrier is 23.9 kcal mol™". The rate-limiting step in
path B-III is also the H,-splitting step (a-TS1), whose free-
energy barrier is 28.2 kcal mol™".
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In addition, the imine—borane complex also exists in
equilibrium under the reaction conditions. We investigated
the reduction of benzaldehyde by the b-11 ion pair that was
generated by the FLP(B(2,6-CL,C¢H;)(p-HC(F,),/imine)-
induced H, splitting through the b-TS6 transition state. The
corresponding free-energy profile is shown in Figure S (path B-
IV). The benzaldehyde is reduced by b-11 ion pair via
transition state b-TS11 with a free-energy barrier of 23.1 kcal
mol™". In b-TS11, H* and H™ are simultaneously transferred to
benzaldehyde from the b-11 ion pair based on the vibrational
mode. After this step, the following reaction steps are the same
as those implicated in path A (show in Figure 1). The rate-
determining step in path B-IV is also the cleavage of H, by
borane (B(2,6-Cl,C¢H,)(p-HC4F,),) and imine (b-TS6) with
a free-energy barrier of 28.8 kcal mol ™.

Overall, there are four possible pathways in mechanism B
(paths B-I, B-II, B-III, and B-IV). With barriers of 28.8, 28.2,
and 28.8 keal mol ™, respectively, paths B-I, B-III, and B-IV are
more favorable than path B-II (barrier of 35.6 kcal mol™") and
can occur under experimental conditions. Paths B-I, B-III, and
B-IV involve an imine intermediate, which is consistent with
the gozsible pathways proposed by the groups of Ogoshi and
Wei.”™

2.3. Mechanism of Pathway C (H, Splitting by the FLP
Composed of Borane and Benzaldehyde). The free-
energy profile of pathway C is shown in Figure 6, and the
optimized structures of all species along the pathway are shown
in Figure S8 in the Supporting Information. First, H, is split by
Lewis acid B(2,6-Cl,C4H,) (p-HC,F,), and benzaldehyde via a
reaction similar to that studied by Privalov, Soos, and Pati."’
The transition state c-TS1 associated with this reaction lies at
34.7 keal mol™" above a-1 (free energy in THF). Based on this
energy value, the barrier of the H, splitting reaction is higher
than that reported in prior studies, '’ probably because of the
increased stability of the Lewis adduct a-1.

https://doi.org/10.1021/acs.joc.1c02491
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Following the splitting of H,, amine—alcohol condensation
takes place via transition state c-TS2. The free-energy barrier
of this transition state (32.8 kcal mol™") is much higher than
that of the similar a-TS3 transition state in pathway A because
of the lack of the carbocation stabilizing effect of Lewis acid
B(2,6-CL,C4H;)(p-HC¢F,),. The product of amine—alcohol
condensation is a hemiaminal cation c¢-2 that undergoes
isomerization to give the c-3 ion pair. The proximity between
the adjacent hydridoborate and ammonium cation groups in c-
3 result in a weak B—H...H—N interaction, which leads to the
generation of H, via transition state c-TS3. The free-energy
barrier associated with this reaction is as high as 38.6 kcal
mol™". Subsequently, the in situ-generated dihydrogen is split
by Lewis acid B(2,6-CL,C,H;)(p-HC4F,), and hemiaminal via
c-TS4, resulting in the production of H,O and ion pair b-11.
The following steps in the mechanism are similar to those
determined for pathway B.

Considering that the free-energy barrier of pathway C is 35.6
keal mol™!(c-TS3), this mechanism is unfavorable.

2.4. Mechanism of Pathway D (H, Splitting by the
FLP Composed of Borane and THF). Pathway D was first
proposed by Hoshimoto et al,, and it involves the splitting of
H, to gield an ion pair followed by the subsequent reduction of
imine.”* The free-energy profile of this pathway is shown in
Figure 7, and the optimized structures of all species along the
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Figure 7. Free-energy profile of the FLP (B(2,6-CL,CH;)(p-
HC(F,),/THF)-catalyzed reductive amination of aniline and
benzaldehyde by dihydrogen (path D). Optimized structures of the
stationary points (key bond lengths are given in A).

pathway are shown in Figure S9. First, dihydrogen is split by
the FLP composed of Lewis acid B(2,6-Cl,CsH;)(p-HCGF,),
and THF (Lewis base) via transition state d-TS1. The
resulting ion pair d-1 bearing H" and H™ promotes the
hydrogenation of imine. According to Heshmat and Privalov,
the free-energy barrier of heterolytic H, cleavage by THF is

about 20 kcal mol™'.'* However, the barrier determined
herein for H, splitting by B(2,6-CL,CsH;)(p-HCGF,), and
THE is as high as 30.8 kcal mol™" (d-TS1, see Figure 7). The
difference is attributed to the increased stability of the a-1
adduct formed in the latter case. The amine product is finally
formed by imine reduction via transition states d-TS2 (proton
abstraction, 16.2 kcal mol™") and b-TS7 (hydride transfer, 16.7
kcal mol™"). Considering that the energy barrier of the rate-
limiting H, splitting step in pathway D is high (30.8 kcal
mol™'), THF cannot adequately mediate the reductive
amination of aniline and benzaldehyde.

2.5. Discussion on the Favorable Mechanism. The
results discussed in Sections 2.12.22.32.4 show that the free-
energy barriers of pathways (A, B-I, B-II, B-III, B-IV, C, and D)
implicated in the B(2,6-Cl,C4H;)(p-HC(F,),-catalyzed reduc-
tive amination of aniline and benzaldehyde by dihydrogen are
282, 28.8, 35.6, 28.2, 28.8, 38.6, and 30.8 kcal mol™’,
respectively (Table 1). Obviously, paths A, B-I, B-III, and B-
IV are favorable, whereas paths B-II, C, and D are not. Based
on B3LYP-d3 and wB97XD calculations, paths A and B-III are
slightly more likely to occur than paths B-I and B-IV under
experimental conditions. The calculated reaction barriers are in
good agreement with experimental data determined at 100™* or
80 °C.”" Heterolytic H, cleavage is the rate-limiting step in
pathways A (a-TS1), B-I (b-TS6), B-III (a-TS1), and B-IV (b-
TS6). In previous studies, it was found that the experimental
product yield increases with increasing H, pressure, which
confirms that H, splitting is the rate-limiting step.”* Overall,
our proposed paths A, B-I, B-III, and B-IV are in accordance
with the experimental observations.

The differences observed in the H, splitting transition state
corresponding to the seven proposed reaction pathways are
attributed to variations in the Lewis bases. Table 2 compares
the basicity and proton affinity of these bases, and the reported
values suggest that aniline and imine are stronger bases and are
more capable of splitting H,. Other Lewis bases, including
hemiaminal, benzaldehyde, and THF, are less basic than
aniline and are unable to split H, under experimental
conditions. The strong Lewis bases used in paths A, B-I B-
III, and B-IV result in lower energy barriers compared to paths
B-II, C, and D. Therefore, it may be concluded that the Lewis
base determines which path is favorable.

Imine intermediates are involved in paths B-I, B-III, and B-
IV, which agrees well with previous experimental observa-
tions.”* However, pathway A contradicts the experiments, as it
does not involve an imine intermediate. To explain this
contradiction, we must consider that the process of imine
formation is reversible, as shown in Scheme 3. In experiments,
about 10% of the benzaldehyde reactant was constantly
observed throughout the reaction,”® which confirms the
equilibrium between the imine formation and hydrolysis
under reaction conditions. Such equilibrium allows for the
H, splitting by borane and aniline via path A. Recently, the
groups of Maji, Zhao, and Chan separately developed a

Table 1. Free-Energy Barriers of the Rate-Limiting Steps in Different Proposed Pathways of B(2,6-Cl,C¢H,)(p-HCF,),-
Catalyzed Reductive Amination of Aniline and Benzaldehyde with Dihydrogen (Unit: kcal mol™")

path A path B-I
free-energy barrier (M062X) 28.2 28.8
free-energy barrier (B3LYP-d3) 24.6 26.5
free-energy barrier (wB97XD) 253 27.1

path B-II path B-III path B-IV path C path D
35.6 28.2 28.8 38.6 30.8
/ 24.6 26.5 / /
/ 253 27.1 / /
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Table 2. Proton Affinities of Five Lewis Bases and the Free-Energy Barriers of H, Splitting by B(2,6-Cl,C¢H,)(p-HC(F,), and

These Lewis Bases (Unit: kcal mol™")

path A path B-I path B-II
Lewis base aniline imine hemiaminal
TS a-TS1 b-TS6 b-TS9
proton affinity 169.1 170.8 161.3
AG (TS) 28.2 28.8 35.6

path B-III path B-IV path C path D
aniline imine benzaldehyde THE
a-TS1 b-TS6 c-TS1 d-TS1
169.1 170.8 148.1 153.7
28.2 28.8 38.6 30.8

Scheme 3. Equilibrium between the Formation and
Hydrolysis of Imine under Reaction Conditions

H

)\\N’Ph + H,0

Ph

[0}

N

Ph H
0.0 kcal/mol

AG*=12.3 keal/mol
AG*=11.0 keal/mol

PhNH, +

1.1 kcal/mol

promising borane B(CF;);-catalyzed direct N-alkylation
reaction of amine with benzylic alcohols,”™ which suggests
that the amine—alcohol condensation mechanism along path A
is feasible.

Overall, the results indicate that the B(2,6-CL,C¢H;)(p-
HC4F,),-catalyzed reductive amination of aniline and
benzaldehyde by dihydrogen may proceed via four possible

pathways. Path A is initiated by the cleavage of H, under the
effect of borane and aniline. The H,-splitting step is followed
by benzaldehyde hydrogenation to form benzylic alcohol and
then amine—alcohol condensation to yield the amine product.
The other three possible pathways involve imine intermediates.
The generated imines undergo hydrogenation by two different
ion pairs. In path B-I, the ion pair is formed upon H, splitting
by Lewis acid B(2,6-Cl,C¢H;)(p-HCGF,), and the imine itself.
Meanwhile, in path B-III, the ion pair is generated upon the
splitting of H, by Lewis acid B(2,6-Cl,C4H;)(p-HC4F,), and
aniline. Path IV is similar to path A, except that H, is split by
imine and Lewis acid B(2,6-Cl,C¢H,)(p-HCGF,), in the first
step. Paths B-I and B-III are similar with prior studies, but
paths A and IV are novel mechanisms proposed for the B(2,6-
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Figure 8. Free-energy profile of the B(C4F;);-catalzyed reductive amination of aniline and benzaldehyde by dihydrogen. Optimized structures of

the stationary points (key bond lengths are given in A).
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CL,C4H;) (p-HCF,),-catalzyed reductive amination of aniline
and benzaldehyde by dihydrogen.

2.6. Other Lewis Acids. According to previous exper-
imental studies, the yield of the amine product produced in
THF via the B(2,6-Cl,C¢H;)(p-HCGF,),-catalyzed reductive
amination of aniline and benzaldehyde is greater than 99%.
The use of other triarylborane catalysts such as B(C4Fs)s,
B(C¢ClL)(C4Fs),, B(p-HC(F,);, and BPh; results in the
generation of imines as the main product.”* In this study,
borane B(CF;); was chosen as another catalyst of reductive
amination to explore how the Lewis acid determines the
selectivity of products. The corresponding free-energy profile is
shown in Figure 8A,B, and the optimized intermediates and
transition states are shown in Figures SI1 and S12 in the
Supporting Information.

Two possible pathways of B(C¢F;);-catalyzed reductive
amination of aniline and benzaldehyde are considered. The
first pathway is similar to path A shown in Figure 1. This
pathway (shown in Figure 8A) is initiated by H, splitting
under the effect of the B(C4Fs); Lewis acid and aniline. The
initiation step proceeds via the e-TS1 transition state
characterized by a free-energy barrier of 31.6 kcal mol™ in
THF (relative to e-1). Clearly, the barrier is large, which
indicates that the generation of amine via this pathway is
difficult under experimental conditions. The main reason
behind such a high energy is that the Lewis adduct e-1 formed
by B(C4Fs); and aniline is very stable (—19.1 kcal mol™,
B(C4Fs); + aniline — e-1). Considering that the acidity of
B(C¢Fs); (—=71.7 kcal mol™) is greater than that of B(2,6-
CL,C¢H;)(p-HC(F,), (—62.8 kcal mol™"), the Lewis adduct e-
1 is more stable than a-1.

The other pathway (shown in Figure 8B) involves the
generation of imine and is similar to pathway B-I shown in
Figure 2. The process involves several steps including
nucleophilic attack of aniline on benzaldehyde (f-TS1, 11.3
kcal mol™), proton migration (f-TS2, 5.6 kcal mol™"), hydride
transfer (£-TS3, 2.6 kcal mol™"), C—O bond breaking (f-TS4,
11.6 kcal mol™"), imine generation (f-TSS, 2.1 kcal mol™"),
and ligand exchange (f-TS6, 20.1 kcal mol™"). The last step has
the highest free-energy barrier and is thus the rate-limiting
step. The reaction is facilitated by exothermicity (18.0 kcal
mol™") and the generation of the H,O byproduct that can be
absorbed by a 4 A molecular sieve. Overall, the results indicate
that the formation of an imine intermediate by the B(C4F;);-
catalyzed reductive amination of aniline and benzaldehyde with
H, can easily occur.

As shown in Figure 9, B(CFs);-catalyzed reduction of imine
by H, proceeds via transition state f-TS7. However,
considering that f-TS7 lies at 33.4 kcal mol™' above the
Lewis adduct e-1, further reduction of the imine to yield the
amine product is unlikely under experimental conditions. This
is consistent with previous experimental reports showing that
imines are the main products of the reductive aniline and
benzaldehyde amination reaction catalyzed by B(C4F;);.

2.7. Selectivity of Products. As mentioned in the
introduction, the product of reductive aniline and benzalde-
hyde amination by dihydrogen varies depending on the nature
of the Lewis acid catalyst used. Table 3 summarizes the
products obtained using catalysts B1 (B(2,6-CL,CH;)(p-
HCF,),),”* B2 (B(2-CI-5-FC4H,);),”" B3 (B(2,6-
Cl,CeH,),(2-Cl-5-FCgHy)),”” BS (B(p-HC4F,);),” B6 (B-
(C4Fs)3),” and B7 (B(C4F;), (C4Cl)).”* Lewis acids B1, B2,
and B3 yield amines, while BS, B6, and B7 yield imines. To
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Figure 9. Free-energy profile of B(C4F;);-catalyzed reduction of
imine by dihydrogen. Optimized structures of the stationary points
(key bond lengths are given in A).

explore how the Lewis acid catalyst determines the selectivity
of products, the natural charge on the boron atom and the
hydride affinities of different catalysts are compared.

The values listed in Table 3 demonstrate that the charge on
the boron atom in Lewis acid is linearly related to the relative
energies of the Lewis adduct and the H, splitting transition
state (R* = 0.99 and 0.97, respectively, as shown in Figure
10a). When the natural charge on the boron atom is large (e.g,
B1, B2, and B3), the relative energy of the Lewis adduct is
small, but that of the transition state is moderate. This results
in a moderate free-energy barrier, which means that the
amination reaction can occur under experimental conditions.
However, when the natural charge on the boron atom is small
(e.g, BS, B6, and B7), the energy of the H, splitting transition
state is low, but the Lewis adduct is highly stable, resulting in a
large free-energy barrier. Consequently, the cleavage of H,
cannot easily occur. With correlation coefhicients of 0.79 and
0.82, the relations between hydride affinity and Lewis adduct
energy and H, splitting transition state are not linear.
Therefore, the stability of the Lewis adduct and the efliciency
of H, splitting are more influenced by the natural charge on
the boron than by hydride affinity. Based on the data listed in
Table 3, amines are produced when the natural charge on
boron is larger than 1, but imines are produced when this
charge is smaller than 1 (Figure 10b).

In addition, the product of reductive aniline and
benzaldehyde amination by dihydrogen is imine when the
Lewis acid is BPh, in experiments.”* The natural charge on
boron in BPh; is 0.93, indicating that the Lewis acid BPh; also
follows the rule in Figure 10b. The free-energy barrier of H,
splitting by BPh, and aniline is 28.9 kcal mol™', generating an
ion pair. Then benzaldehyde is reduced by the ion pair, but the
reaction needs to overcome a free-energy barrier of 31.0 kcal
mol™". Thus, it is difficult for BPh, to produce amine following
a path similar to pathway A, but produce imine following
pathway B.

Based on the obtained results, two Lewis acids (B4, B(2,6-
CLCH,)(2, 6-CLCF5)(3,5-F,C4H,) and BS, B(p-CIC(F,);)
were designed. The natural charges on boron atoms in the
designed B4 and B8 catalysts are 1.08 and 0.89, respectively.

https://doi.org/10.1021/acs.joc.1c02491
J. Org. Chem. 2022, 87, 1194—1207


https://pubs.acs.org/doi/suppl/10.1021/acs.joc.1c02491/suppl_file/jo1c02491_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.1c02491?fig=fig9&ref=pdf
pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.1c02491?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Organic Chemistry

pubs.acs.org/joc

Table 3. Natural Charge on Boron Atom and Hydride Affinities of the Eight Lewis Acids "

B172 B2 B37b

B4

B57a B67a B77a Bg&b

S K

¥

Main .
product Amine
e(B) 1.00 1.05 1.12
Hydride
affinity 72.1 63.7 63.1
G
(adduct) -10.4 —6.6 1.9
G(TS) 178 22,0 272
AG(TS) 28.2 28.6 27.2

A, 4

0

1.08
66.7

-1.7
20.3
22.0

Imine
0.90 0.89 0.98 0.89
76.1 78.2 75.1 80.3
-18.8 —19.1 -11.6 -20.2
14.0 12.5 18.4 15.2
32.8 31.6 30.0 35.4

“Relative energies of the adducts and transition states implicated in the reductive aniline and benzaldehyde amination reaction catalyzed by

different Lewis acids (units of kcal mol™). bDesigned Lewis acid.
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Figure 10. Relationship between the charge of the boron atom in the Lewis acid and the relative energies of the adduct and transition states.

Based on the above discussions, the B4-catalyzed amination of
aniline and benzaldehyde by dihydrogen will yield an amine,
while the B8-catalyzed reaction gives imine. Indeed, the free-
energy barriers of H, splitting in the two reactions (B4- and
B8-catalyzed) are 22.0 and 35.4 kcal mol™, respectively.
Obviously, the results confirm that product selectivity can be
predicted based on the natural charge on the boron atom in
the Lewis acid.

3. CONCLUSIONS

In summary, this study uses DFT calculations to elucidate the
detailed mechanism of borane-catalyzed reductive amination of
aldehyde and aniline by the H, reducing agent. The results
show that different borane catalysts give different products.
When borane B(2,6-Cl,CH;)(p-HCGF,), is used, the desired
amine product is generated via four possible reaction pathways
(paths A, B-1, B-IIL, and B-IV, summarized in Scheme 4). Paths
A and B-1V involve the hydrogenation of benzaldehyde to form
benzylic alcohol by different ion pairs (ion pairs 1 and 2;
Scheme 4) followed by Lewis acid/base-promoted amine—
alcohol condensation. Meanwhile, paths B-I and B-III involve
an imine intermediate that undergoes hydrogenation by
different ion pairs 1 and 2. The B(C4Fs);-catalyzed N-
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Scheme 4. Summary of the Possible Pathways of Borane-
Catalyzed Reductive Amination of Ketones or Aldehydes
with Anilines Using H, as the Reducing Agent
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alkylation of amine and benzylic alcohol also proceeds via
pathway A. The favorable pathway is dictated by the basicity of
the Lewis base.
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The product of the B(C¢F;);-catalyzed amination of
aldehyde and aniline by H, is an imine. This is mainly due
to the high stability of the adduct formed by coordination of
B(CgF;); and aniline, which increases the reaction barrier of
imine hydrogenation. Considering that the charge on the
boron atom in the Lewis acid is linearly related to the relative
energies of the Lewis adduct and H, splitting transition state,
the nature of the obtained product depends on this charge.
Our calculations reveal that when the natural charge on the
boron atom is larger than 1, the reaction gives amine, and
when it is less than 1, the reaction gives imine. Therefore, the
product of reductive aniline and benzaldehyde amination by
H, can be controlled by adjusting the natural charge on the
boron atom in the Lewis acid.

4. COMPUTATIONAL DETAILS

All calculations were performed using the Gaussian16 software
package.'* The geometries and harmonic frequencies of all
minima and transition states were optimized and calculated at
the M06-2X/6-311G** level of theory.">'® The calculated
frequencies were used for thermal and entropic corrections at
298.15 K and 1 atm. The calculations were conducted in THF
solvent (consistent with the experiment) using the self-
consistent reaction field method and the IEFPCM solvation
model.'” The important transition states were confirmed by
IRC analysis.'® To obtain more accurate energies, the single-
point energy calculations of the minimum energy conformers
were conducted at the M06-2X/6-311++G** level of theory.
Considering that the correction approach used herein is based
on the ideal gas phase model, the contribution of entropy to
free energy is expected to be overestimated. To account for
such overestimation, a correction factor of —2.6 (or 2.6) kcal
mol™" was added to all of the calculated free energies based on
the “the theory of free volume.”'” Natural bond orbital
analyses were performed at the M06-2X/6-311G** level to
allocate partial atomic charges,”® and IBO analyses were
performed to study the electronic structure changes along the
reaction pathway.”' The CYLview visualization program was
used to display the 3D-optimized structures.””
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